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Crowther's fast-rotation function [Crowther (1972), The Molecular Replacement Method, edited by M. G. 
Rossmann, pp. 173-183. New York: Gordon & Breach] expression has been modified in a manner in 
which it is convenient to explore spherical polar coordinates rather than Eulerian angles. 

The 'rotation function' (Rossmann & Blow, 1962) has 
been widely used in the initial stages of the solution of 
protein structures. The computation of this function 
(Tollin & Rossmann, 1966) is, however, exceedingly 
time consuming. Crowther (1972) has shown that the 
same function can be computed very much faster in 
Eulerian space when each Patterson function is ex- 
panded as a product sum of spherical harmonics and 
spherical Bessel functions. It is, however, often con- 
venient to plot the rotation function in terms of 
spherical coordinates where specific sections represent 
searches for specific rotation axes (e.g. diads, triadsetc.). 
Shown here is how Crowther's fast-rotation function 
can be easily recast in terms of spherical coordinates, 
necessitating only minor changes in the corresponding 
computer program. This is done by applying Eulerian 
rotations to both Patterson functions such that the 
third rotation is relative to a polar axis. 

Rossmann & Blow (1962) defined the rotation func- 
tion as the integral of the product of the Patterson 

function Pl(x) and the rotated Patterson function 
~Pz(x) such that 

R(£21 = f v  {Pl(x)} {~P2(x)}dV, 

where O is the angle of rotation, the integral is evaluated 
within a volume U, and d V is an elementary unit of 
volume. If the rotation ~ is expressed in terms of 
Eulerian angles ~, fl, 7 as defined by Rossmann & Blow 
(1962), and if the first Patterson function is also rotated 
by u, fl, 0 then 

f {~(~z, fl, y=O)P,(x)} {~(a, fl, YlP2(x)}dV 

= f v  {P~(x)} { ~ -  a(o~,fl, y=O)~l(~,fl,'/)P2(x)Idy. 

But 

~-1(~,/~, y = 0)~(~,/3, y) = ~'(y,/~, ~)-- ~p(~0, ~,, K) 
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(see Table  1 for der iva t ion  of  equivalency),  where  
N~(~0,O,~) is a ro ta t ion  in po la r  coord ina tes  by an 
angle ~c=y a b o u t  an  axis whose  incl inat ion ~ f rom 
the posi t ive Xa axis is equal  to fl and  whose  pro jec t ion  
onto  the (X~, X2) plane m a k e s  an angle q~ = e + rc with 
X2 (Fig. 1). Wi th  Crowthe r ' s  definit ion of Euler ian  
angles, a = re/2 + q~. 

If  U represents  a sphere,  then, fol lowing C r o w t h e r  
(1972), we can express the value of  each Pa t t e r son  func- 
t ion at  the po la r  coord ina tes  (r, 0, ~0) by 

P~(r,O,(p) = ~ almJl(ktnr) A m ~ *  " Y~ (O,(p), 
Iron 

and 
Pz(r,O, qo) = Z bt',,,',,~'(kr,'r) m̂'Yt' (O,q)). 

l,ra,n , 

Here  Y~"(0,~0) is the no rma l i zed  spherical  h a r m o n i c  
of  o rder  1, f(k,,r) is the no rma l i zed  spherical  Bessel 
funct ion of  o rder  l, and  a,m,, b,m, are complex  coeffi- 
cients. 

The  ro ta ted  spherical  h a r m o n i c  can then be ex- 
pressed as 

l 

~(~,/~,~)~/'(0,~o) Z = Dq.,(a, fl,~:)2~(O, ep), 
q= -I 

where l iqy l ima Dq,,,(a, fl,7)=e dqm(fl)e , and  dqm(fl) are the 
ma t r ix  e lements  of  the th ree-d imens iona l  ro ta t ion  
group.  It  then  follows tha t  

R(~c, g/,rc + (p)= R(a, fl, y) 

f U * ~" "A'm* = {2a~,,,~J~(k~,,r)N(e, fl, Y=O)Y~ (0,q~)} 
I r a n  

x { ~ br,,,,,,,f,(kr,,,r)N(a, fl, V)~'~'(O,q))}dV 
I'm'if' 

• "" D~m(a, f l , ' /=  0) Y~*(0, ~0)] 
lmn q 

x { ~ bem,.,f,(kr.,r)E~ D~q"m'(a, fl, TlYq"(O,(P)]} dV. 
l 'm'n" q' 

x :  

Fig. 1. The variables 0 and e = n + ~0, where 0 and ~0 are polar co- 
ordinates which specify a direction about which the axes may be 
rotated through an angle ~:. 
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With the orthogonality conditions discussed by 
Crowther (1972) this reduces to 

R(tc, ~, rt + ~p) 
2 ( 2  a,m,b/,, , ,)Z / / ,.eq i(m'-m,~ = * dqm(fl)dqm,(fl)e e . 

/ram' n q 

Now substituting the equivalent polar angles for the 
Eulerian angles 

R(K, ~t, ¢p)= Z (~  al*,,,,,b/,,,,,,) 
/trim' n 

X E / l iKq i (m'-m)~p(_ ) (m'-m)  dqm(~)dq,,,(~b)e e 1 . (1) 
q 

This result should be compared with that of Crowther's 
which corresponds to the special case where the 
Patterson function Pl(X) remains stationary. In that 
case 

R(~,fl, y) Z (Z * / ,,,,r ,m~ = a/mnb/m,n)dm,m(fl)e e . (2) 
/?tim' rt 

The small modification which will be necessary to alter 
the Crowther fast-rotation function program to use 

spherical coordinates can be seen by comparing ex- 
pressions (1) and (2). 

The procedure has been satisfactorily tested by 
comparing the results of a 'slow' rotation function with 
a modified 'fast' rotation function program. 

I am grateful to Michael G. Rossmann for suggesting 
the problem, to him and W. Donald L. Musick for 
help in writing the paper, and also to Tallulah Peterson 
and Sharon Wilder for the preparation of the manu- 
script. The work was supported by the National Science 
Foundation (grant No. BMS74-23537) and the Na- 
tional Institutes of Health (grant No. GM 10704). 
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The observation of anomalous square-pyramidal geometry for pentaphenylantimony, (C6Hs)sSb, has 
long been rationalized as a packing effect. The analogous P and As molecules are trigonal-bipyramidal 
in the solid state as expected. In this work calculations have been made of the energies resulting from 
intra- and intermolecular nonbonded interactions in both observed and hypothetical crystal structures 
of square-pyramidal and trigonal-bipyramidal pentaphenylantimony, pentaphenylarsenic, and penta- 
phenylphosphorus in order to determine if the solid state does indeed stabilize a non-equilibrium 
molecular geometry of (C6Hs)sSb, and if so, how much energy is involved. The energies have been taken 
as pairwise sums over nonbonded atoms; the atom-atom potential functions used include repulsive, 
van der Waals, and Coulombic terms. Results of these calculations have been compared with work in 
which the potential functions did not include such 1/r terms. Both observed and hypothetical structures 
of all three molecules lie in true minima of the energy surface with respect to variations in cell constants 
and molecular position and orientation whether or not electrostatic terms are included. However, only 
the potential functions with Coulombic terms predict the crystallization of pentaphenylantimony as a 
square pyramid. The lattice-energy stabilization is then calculated to be about 15 kJ mol-L 

Introduction 

Considerable attention has been focused on penta- 
phenylantimony, (C6Hs)sSb , since its observed geom- 
etries, square-pyramidal in one crystal form and 
trigonal-bipyramidal in another (a cyclohexane solvate) 
are thought to be strongly influenced by crystal packing 
forces. A comparison of the five known X-ray struc- 
tures of penta-aryl Group V molecules (Brock & 
Webster, 1976) shows that (C6Hs)sSb is alone in ex- 

hibiting a square-pyramidal form. It is, in fact, unique 
among all five-coordinate molecules having identical 
ligands and a spherical shell of d-electrons in displaying 
a non-trigonal-bipyramidal geometry. 

Since the results of solid-state structure determina- 
tions are often used to interpret molecular behavior 
in the gaseous and liquid states, it is important to 
understand the extent to which crystal packing forces 
may influence molecular geometry. In this and previous 
work (Brock & Ibers, 1976) an attempt has been made 
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